الاثنين، 13 مايو، 2013

الحديد معدن شديد


حصل إنسان ما قبل التاريخ على الحديد من النيازك، ومن ثَمّ استخدمه في صناعة العُدَد والأسلحة ومكونات أخرى. وكلمة حديد تعني في العديد من اللغات القديمة فلز من السماء. ولقد استُخدم حديد النيازك في فترات قديمة جدًا يعتقد أنها تصل إلى أربعة آلاف عام قبل الميلاد. ولكن لا توجد أي أدلة مؤكدة تبين بداية استخدام الحديد المستخلص بالصهر والاختزال من الخامات الأرضية، أو تشير إلى المكان الذي بدأ استخلاص الحديد فيه لأول مرة.
ويُعتقد أن الحيثيين هم أول من عرف الحديد بكميات ضخمة. وقد عاشوا فيما يعرف الآن باسم تركيا. وفي عام 1400 ق.م. اكتشف الحيثيون كيفية تصنيع الحديد وأساليب تصليد العُدد والأسلحة الحديدية. وحول هذه الفترة نفسها تقريبًا طوّر سكان كل من الصين والهند طرقًا وأساليب لاستخلاص الحديد. وعندما وصل العالم إلى القرن العاشر قبل الميلاد كانت معظم الحضارات القديمة حينذاك قد توصلت إلى تقنيات تصنيع الحديد، وهكذا بدأ العصر الحديدي.

اتسمت أفران استخلاص الحديد الأولية بالضحالة وعدم العمق. وكانت مجمراتها تشبه الطبق، وكان يُسخّن خام الحديد مع الفحم النباتي في مجمرة الفرن. وبعد مرور عدة ساعات على بدء التسخين يفقد خام الحديد أكسجينه إلى الكربون الساخن المحيط به، ويتحول الخام إلى فلز الحديد في صورة لامعة. ولم يكن يُستخدم فلز الحديد الناتج مباشرة، ولكن يعاد تسخينه مرارًا وفي كل مرة يُطرق للتخلص من بقية الشوائب القصيفة الصلدة. وتمكن صُنَّاع الحديد نحو عام 1200م من إعادة تسخين وتشكيل وتبريد الحديد المستخلص لإنتاج وتصنيع الحديد المطاوع. وقد كانت خواص الحديد المطاوع الناتج تشبه إلى حد بعيد خواص الفولاذ الكربوني المنتج في العصور الحديثة.
وسرعان ما تعلم صناع الحديد أن نفث الهواء خلال قصبات أو ودنات إلى الفرن، ترفع إلى حد كبير درجة الحرارة، وكان لذلك الاكتشاف أثره الكبير في تحسين نوعية الحديد المنتج. وفيما بعد استخدم صنّاع الحديد أداة أو جهازًا أطلق عليه الكير يقوم بدفع الهواء خلال القصبات إلى الفرن. وتمكن صناع الحديد نحو عام 700م في منطقة قطالونيا ـ وهي تقع الآن في شمال شرقي أسبانيا ـ من التوصل إلى أفضل صورة لمجمرة فرن استخلاص الحديد. وعرف ذلك الفرن عندئذ باسم كوركتلان، وكان الهواء يضغط عند قاعدة الفرن ويدفع إلى الداخل باستخدام الطاقة المائية. وبلغت طاقة إنتاج كوركتلان حوالي 160 كجم من الحديد المليف كل خمس ساعات. وهذا الإنتاج أكبر بكثير من إنتاج الأفران السابقة.

حضّر يعقوب بن إسحاق الكندي (ت 260هـ، 873م) أنواعًا من الحديد الفولاذ بأسلوب المزج والصهر، فقد مزج كمية من الحديد المطاوع، وكان يسمى الزماهن، وكمية أخرى من الحديد الصلب (الشبرقان) وصهرهما معًا ثم سخنهما إلى درجة حرارة معلومة بحيث نتج عن ذلك حديد يحتوي على نسبة من الكربون تتراوح بين 0,5 و 1,5%. وعندما تحدث ابن سينا (ت 428هـ، 1037م) عن النيازك قسمها إلى نوعين حجري، وحديدي وهو نفس التقسيم المتبع في الوقت الراهن.
أما في أوروبا لم تتطور طرق وأساليب تشكيل الحديد المنصهر في صورة منتجات استهلاكية مناسبة بصورة مرضية حتى حلول عام 1500م. وفي بداية القرن الثامن عشر الميلادي بدأ صناع الحديد البريطانيون في استخدام الكوك بدلاً من الفحم النباتي في الأفران العالية نظرًا لنقص الأخشاب، وهي المصدر الأساسي للفحم النباتي.
يُعد ابراهام داربي أول من تمكن من تكويك الفحم الحجري وإنتاج الكوك، ومن ثَمّ استخدم الكوك في إنتاج الحديد عام 1709م في بلدة كولبروكديل في مقاطعة شروبشاير في إنجلترا. وفي أواخر القرن الثامن عشر تمكن كل من ابن أبراهام داربي وحفيده من تحسين أسلوب التكويك الذي بدأه رب الأسرة. وقد أدت أعمال هذه العائلة إلى قيام الثورة الصناعية التي بدأت في بريطانيا بإنتاج الحديد الزهر ومن ثم استخدامه في المباني والآلات. وقد نقل المهاجرون الأوروبيون هذه الصناعات ونشروها بعد ذلك في أرجاء العالم.


سبائك حديدية:
السبائك الحديدية)Ferrous Alloys( هي عائلة السبائك التي تعتمد علي عنصر الحديد كالمكون الرئيسي لها أو العنصر الغالب فيها، وتضم هذه العائلة عدد كبير من السبائك ،وتنقسم الي مجموعتين رئيسيتين وهما سبائك الصلب (Steels) وسبائك الحديد الزهر (Cast Iron).
سبائك الصلب:
مقدمة الصلب Steel هو سبيكة تصنع أساساً من الحديد بمحتوى كربون يتراوح بين 0.2 و 2.04% بالوزن (ك:1000–10,8.67حد), حسب الدرجة. والكربون هو أكثر العناصر السبائكية فاعلية من حيث التكلفة في سبائك الحديد, إلا أنه تُستعمل العديد من العناصر السابكة الأخرى مثل المنگنيز، الكروم، الڤناديوم، والتنگستن.[1] ويعمل الكربون والعناصر الأخرى كعوامل تصليد (تقسية), لمنع الانخلاعات في العقد البلوري لذرات الحديد من الانزلاق أمام بعضهم البعض. ويتحكم مقدار العناصر السابكة وشكل وجودهم في الصلب (solute elements, precipitated phase) في صفات مثل الصلادة, والمطيلية ومقاومة الشد للصلب الناتج. فالصلب ذو المحتوى المرتفع من الكربون يمكن أن يـُصنع ليكون أكثر صلادة وأقوى من الحديد، إلا أنه أكثر قصافة.
قابلية الذوبان العظمى للكربون في الحديد (في منطقة الأوستنتيت) هي 2.14% بالوزن, تحدث عند درجة حرارة 1149 °م; التركزات الأعلى من الكربون أو درجات الحرارة الأقل ستنتج سمنتيت.
السبائك ذات محتوى الكربون الأعلى من ذلك تـُعرف باسم حديد زهر بسبب درجة انصهارهم الأقل وقابليتهم للصب.[1] ويجب أيضاً تمييز الصلب عن الحديد المطاوع المحتوي فقط على كمية ضئيلة جداً من العناصر الأخرى, إلا أنه يحتوي على 1–3% بالوزن من خبث في صيغة حبيبات مستطالة في اتجاه واحد, مما يعطي الحديد «grain» مميزة. فهو أكثر مقاومة للصدأ من الصلب ويُمكن لحمه بسهولة.
ومن الشائع اليوم الحديث عن 'صناعة الحديد والصلب' كما لو كانت شيئاً واحداً, ولكنهما تاريخياً كانا منتجـَين منفصلـَين.
بالرغم من أن الصلب كان يـُنتـَج بالعديد من الطرق غير الفعالة قبل عصر النهضة بوقت طويل, فإن استعماله أصبح أكثر شيوعاً بعد تطوير طرق أكثر فاعلية لإنتاجه في القرن السابع عشر. وباختراع عملية بسمر في منتصف القرن التاسع عشر, أصبح الصلب سلعة تـُنتـَج بكميات كبيرة بتكلفة أرخص نسبياً. التحسينات اللاحقة على العملية, مثل basic oxygen steelmaking, خفضت تكلفة الإنتاج بدرجة أكبر بينما رفعت من جودة المعدن.

واليوم, الصلي هو أحد أكثر المواد شيوعاً في العالم وهو مكوِّن رئيسي في المباني والمعدات والسيارات, والأجهزة المنزلية الرئيسية. الصلب المعاصر يتم تمييزه عموماً حسب درجات الصلب المتعددة التي توصـِّفها هيئات التوصيف القياسى.
- تصنيف سبائك الصلب (يسمى أيضا الفولاذ) :
يسمى الصلب أيضا الفولاذ ويفهم من بعض الكتابات العربية أن الفولاذ هو لفظ يطلق على الأصلاب السبائكية خلافاً وتمييزاً لها عن الأصلاب الكربونية العادية.
تعتبر سبائك الصلب (الأصلاب) أكثر المواد الفلزية انتشارا واستخداما نظرا لرخص تكلفة إنتاجها بالإضافة إلى إمكانية إنتاجها طبقا لمواصفات مختلفة وكذلك القدرة الكبيرة علي التحكم في تركيباتها الكيميائية.
وتنقسم الأصلاب عامة إلى عدة فئات تتباين في خو اصها الميكانيكية والوظيفية وقابليتها للتصنيع واللحام والمعالجة الحرارية ومقاومتها للتآكل تباينا كبيرا ملبية لطيف واسع من المتطلبات والاستخدامات التي لا تتوافر لغيرها من المواد الهندسية.
- أصلاب كربونية (Carbon Steels)
- أصلاب سبائكية (Alloy Steels)
- أصلاب منخفضة السبائكية عالية المقاومة (High-Strength Low-Alloy Steels)
- أصلاب العدد (Tool Steels)
- أصلاب تقسى بتعتيق المرتنزيت (Maraging Steels)
- أصلاب المنجنيز الأوستنيتية (Austenitic Manganese Steels)
- أصلاب مقاومة للصدأ (Stainless Steels)
حديد زهر :
الحديد الزهر يسمى أيضا حديد السبك أو حديد الصب (Cast Iron)، ويعرف بحسب مجمع اللغة العربية بالقاهرة كما يلى:
- الحديد الناتج من صهر الخام في الأفران العالية وهو حديد غير نقي سهل الكسر ولا يقبل التشكيل، يبدأ في الانصهار عند 1270 درجة مئوية.
- أشابة من الحديد معدة للصب، تشتمل على بعض العناصر الأخرى.
- الحديد الناتج من الأفران العالية وتبلغ كثافته 7.86 جم/سم3، ودرجة انصهاره ما بين 1275 إلى 1505ْم، وهو سهل الكسر ولا يقبل التشكيل.
- حديد يحتوي على نسبة كربون تفوق حد ذوبانه في طور الأوستنيت عند درجة حرارة اليوتكتي فينفصل الكربون في صورة قشور أو شبه كريات (حديد زهر رمادي) أو قد يكوّن سمنتيتاً (حديد زهر أبيض).
- نوع من الحديد غير النقى ينتج بصهر حديد الزهر مع الجير ثم صبه في قوالب، وهو قصيف ولكنه يتميز بصلادته.


يوجد الحديد في الطبيعة في هيئة أربعة نظائر مستقرة، تكون موزعة كالآتي 5.845% 54Fe و 91.754% 56Fe و 2.119% 57Fe و 0.282% 58Fe. من المتوقع أن يخضع النظير 54Fe لعملية تحلل بيتا المزدوج ‏(en)‏، لكن هذه العملية لم تلاحظ بالتجربة بالنسبة لهذه الجسيمات. وحده النظير 57Fe من بين النظائر المستقرة للحديد لديه لف مغزلي ومقداره (−1/2).
يعد نظير الحديد 56Fe أكثر نظائر الحديد وفرة وأكثرها ثباتاً. من غير الممكن إجراء عملية انشطار أو اندماج نووي لهذا النظير مع حدوث إصدار للطاقة. يتشكل هذا النظير من نظير النيكل 56Ni الذي يتشكل من نوى أخف من خلال عملية ألفا داخل المستعرات العظمى (اقرأ عملية احتراق السيليكون). يشكل النظير 56 للنيكل نهاية سلسلة تفاعل الاندماج النووي داخل النجوم العملاقة، لأن إضافة جسيم ألفا آخر سيشكل الزنك-60، والذي يتطلب تشكيله طاقة عالية جداً، لذلك فإن النيكل-56، والذي عمر النصف له 6 أيام، يوجد بكثرة في هذه النجوم. أثناء عملية اضمحلال المستعر الأعظم إلى بقايا، تحدث للنيكل-56 عمليتي إصدار بوزيتروني متلاحقتين، يتحول من خلالها أولاً إلى الكوبالت-56، ومن ثم إلى الحديد-56 المستقر، مما يفسر الوفرة الكبيرة للحديد في الكون مقارنة مع فلزات أخرى مقاربة في الكتلة الذرية. يوجد نظير الحديد-56 في قلب العملاق الأحمر وفي النيازك الحديدية وفي جوف الكرة الأرضية.


وردت كلمة حديد في عدة مواضع في القرآن الكريم، وهناك سورة في القرآن هي سورة الحديد ورد فيها نزول الحديد من السماء، قال تعالى: ﴿لَقَدْ أَرْسَلْنَا رُسُلَنَا بِالْبَيِّنَاتِ وَأَنْزَلْنَا مَعَهُمُ الْكِتَابَ وَالْمِيزَانَ لِيَقُومَ النَّاسُ بِالْقِسْطِ وَأَنْزَلْنَا الْحَدِيدَ فِيهِ بَأْسٌ شَدِيدٌ وَمَنَافِعُ لِلنَّاسِ وَلِيَعْلَمَ اللَّهُ مَنْ يَنْصُرُهُ وَرُسُلَهُ بِالْغَيْبِ إِنَّ اللَّهَ قَوِيٌّ عَزِيزٌ ﴾«‌57‏:25»
يؤمن بعض المسلمين، بموجب هذه الآية أن الحديد نزل من السماء، ويربطون ذلك بما ورد في النظريات العلمية الحديثة بأن الحديد لم يكن موجوداً على الأرض إطلاقا قبل ملايين السنين، بل وصل الأرض عبر النيازك وذلك خلال فترات تكوين الأرض.

من المعروف أن الحديد الغفل حديد غير نقي، حيث أنه يحتوي على 4-5 ٪ كربون مع كميات صغيرة من الشوائب الأخرى مثل الكبريت الماغنيسيوم الفوسفور المنغنيز، غير أنه هش لزيادة نسبة الكربون به. يصب هذا النوع من الحديد، والمعروف أيضا باسم الحديد الزهر، في المسابك لإنتاج الأنابيب والواقيات من المواد المشعة والقضبان وغيرها من المسبوكات الأخرى.
كما يمكن إنتاج الصلب أو الحديد المطاوع من الحديد الغفل. استخدمت لذلك عدة طرق منها أفران التسويط ومحولات بسمر وأفران المجمرة المكشوفة وفرن القوس الكهربي. تهدف هذه الطرق لأكسدة بعض أو كل الكربون وغيره من الشوائب، ومن ناحية أخرى، إضافة المعادن الأخرى لإنتاج سبائك الصلب.
وهناك طرق بديلة لإنتاج الحديد، وبعض هذه العمليات تنتج الصلب مباشرة في خطوة واحدة بدلاً من إنتاج الحديد ثم تنقيته لإنتاج الصلب. أهم هذه الطرق ما يعرف باسم الصهر، والاختلاف الأساسي بين الاختزال المباشر والصهر، أن الناتج في الحالة الثانية يكون سائلا، بينما في الأولى ينتج الحديد في صورة جامدة وتتم هذه العملية في فرن الصهر أو قد يكون الصهر والاختزال باستخدام البلازما.

فرن قوس البلازما يشبه إلى حد بعيد فرن القوس الكهربي، ولكن بدلا من أقطاب الجرافيت، يتم تثبيت شعلات البلازما. هذه الشعلات تبرد بالماء من خلال غلاف معدني يغلفها. يمر من خلال الغلاف أنابيب لتغذية الغاز المتأين (سواء النيتروجين أو الأرجون)، وقطب إسطواني قابل للذوبان من الجرافيت.
يتم الصهر على مرحلتين باستخدام البلازما الأولى: اختزال خام الحديد جزئيا بنسبة 50% إلى 60%، قبل أن يتم خلطها مع الفحم والحجر الجيري وفي الثانية: الاختزال النهائي والصهر وهو يشبه إلى حد كبير الاختزال في الفرن العالي والفارق الأساسي هو وجود البلازما.

من أبرز استخدامات الحديد ما يلي:
استخدامات الحديد الزهر : يستخدم في صناعة الأدوات التي لا تتعرض للصدمات مثل : أنابيب المياه وأنابيب الغاز.
استخدامات الحديد المطاوع : ويستخدم في صنع المغناطيسيات الكهربائية المؤقتة المستخدمة في الأجهزة الكهربائية، كما يستخدم في قضبان التسليح المستخدمة في البناء.
استخدامات الصلب : يستخدم في صناعة السفن وقضبان سكك الحديد والجسور والسيارات.
يعيب سبائك الحديد والصلب تعرضها بشدة للصدأ، إذا لم تكن محمية بشكل أو بآخر. الطلاء والجلفنة والتخميل والغطاء البلاستيكي هي طرق تستخدم جميعها لحماية الحديد من الصدأ من خلال إبعاد الماء والأكسجين عن سطح المعدن، كما أن هناك طريقة أخرى تستخدم غالباً في حماية أجسام السفن الخارجية وحماية أنابيب نقل النفط وسخانات المياة، وهي باستخدام طريقة القطب المضحى به والذي يضحى به ليتآكل بدلاً من الجسم الأساسي.